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Artificial intelligence (AI) refers to systems that display intelligent behaviour by analysing
their environment and taking actions – with some degree of autonomy – to achieve specific
goals.
AI-based systems can be purely software-based, acting in the virtual world (e.g. voice
assistants, image analysis software, search engines, speech and face recognition systems) or
AI can be embedded in hardware devices (e.g. advanced robots, autonomous cars, drones or
Internet of Things applications).

As a scientific discipline, AI includes several approaches and techniques, such as machine
learning (of which deep learning and reinforcement learning are specific examples),
machine reasoning (which includes planning, scheduling, knowledge representation and
reasoning, search, and optimization), and robotics (which includes control, perception,
sensors and actuators, as well as the integration of all other techniques into cyber-physical
systems).”

Source: A Definition of AI: Main Capabilities and Disciplines. High-Level Expert Group on Artificial Intelligence set up by the European Commission, 9 p. 
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Usage of AI may increase anticipatory and decision making capabilities within complex and uncertain environments. AI
systems have high potential in ATM, specifically in areas which involves decision making under uncertainty (e.g. conflict
detection and resolution) and prediction with limited information (e.g. trajectory prediction).
These approaches can support the human operators in exploitation of timely and dynamic information on atmospheric
hazards, traffic fluctuations, and airspace utilisation.
In addition to developing solutions to support en-route operations, AI can be applied in:
i) speech recognition to act as an additional safety net to detect read-back errors;
ii) trajectory synchronisation of aircraft ground movements that provide optimised taxiing strategies that comprehensively

accounts for arrivals and departures as well;
iii) predicting the most optimal runway configuration for a given arrival sequence and departure schedule so as to maximise

the runway throughput. With the development of these tools, it is envisioned that AI will be integral to ATM operations
in the future to form a highly automated environment capable of supporting high intensity and more complex
operations. In similar fashion, these decision-making tools also have the potential to ensure that aviation is not held
back by human resource constraints.

There is therefore a need to align research, industry, State regulators and service providers to ensure readiness to face and
manage an environment where ATM is supported by highly intelligent automation functions that process and generate 
advisories in a constantly evolving manner that can even adapt to new airspace users such as unmanned aircraft systems 
(UAS). 

Source: Potential of Artificial Intelligence (AI) in Air Traffic Management (ATM). ICAO, Working paper, 2018, 3 p.
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Source: AI in Eastern Europe. 
Artificial Intelligence industry 

landscape overview 2018. Deep 
Knowledge Analytics, 2018, 40 p.

AI in Eastern Europe
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Industry and Technology Distribution in Ukraine (57 Companies) 

Source: AI in Eastern Europe. 
Artificial Intelligence industry 

landscape overview 2018. Deep 
Knowledge Analytics, 2018, 40 p.6



Drones and AI in Action

Source: DRONEII.com
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• Global revenues from AI for enterprise applications is projected to grow from $1.62B in 2018 to $31.2B in 2025 attaining a 
52.59% CAGR in the forecast period. Image recognition and tagging, patient data processing, localization and mapping, predictive 
maintenance, use of algorithms and machine learning to predict and thwart security threats, intelligent recruitment, and HR 
systems are a few of the many enterprise application use cases predicted to fuel the projected rapid growth of AI in the enterprise. 
Source: Statista.
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SESAR STRATEGY
• SESAR-ER4-06-2019: Safety and Resilience 
• SESAR-ER4-31-2019: U-space 
(Application area: Common altitude reference 
Application area: flight-planning and demand and capacity 

balancing for drones
Application area: U-space separation management service ) 
• SESAR-ER4-02-2019: Cognitive Support 
• SESAR-ER4-09-2019: Legal and Regulatory 

Challenges of Higher Levels of Automation 
• SESAR-ER4-24-2019: Innovation in CNS to 

enable Digitalised Operations
(Application area: Low cost alternative Position, Navigation 

and Timing (A-PNT) for General Aviation and drones)  
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Research problems:
 “bad” UAV flight data
 uncertainty of flight situation

Research objective: 
To develop a method to recover lost UAV flight data and correct its outliers; to develop method of 

multi-choice UAV flight situations classification.
Research tasks:
 To analyze flight data recovering methods; analyze general principles of flight situations 

classification;
 To develop a multi-parametric data recovering in Unmanned Aerial System;
 To improve method of multi-choice UAV flight situations classification considering recovered data;
 To verify developed methods by means of computer simulation and experimental tests.

Output:
 method of multi-parametric data recovery
 method of multi-choice classification of flight situations

Situation awareness              Safety 

Multi-parametric data recovery in unmanned aerial
system with multi-choice classification of flight 
situations
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It is predicted in 2022 – 2023 years the period of UAVs commercial sales, their products and
services will begin. In subsequent years, a rapid growth in demand for UAVs will be expected to
reach 250,000 units up to 2035. 175,000, of which will have commercial application.
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Flight safety depends on a large number of factors, whose actions are difficult to
predict and prevent, since most of them have probabilistic nature.

Factors that affect UAS operation

UAV

Inappropriate UAV 
technical conditions

Loss of communication link

Software insecurity

Adverse weather conditions
Inability of collisions

detection and avoidance Navigation errors

Failures and malfunctions 
of the functional systems 

elements

Operator failures
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Losses and outliers in UAS parameters measurements

0 50 100 150 200

-40

-30

-20

-10

0

10

20

30

U
AV

ro
ll,

de
g

38% of losses

Time , s

200 400 600 800 1000 1200 1400 1600 1800
0

100

200

300

400

500

600

700

Кур
с Б

ПЛ
А, г

рад

Час с

Fig. 2. Outliers in UAV parameters measurements

Fig. 1. Losses in UAV parameters measurements
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Analysis of lost data recovery methods 

• Mean value imputation
• Imputation by constant value
• Imputation by last value
• Imputation by regression 
• ZET methods (Zet, ZetM, ZetBraid)
• Bartlett’s method 
• Resampling method

Statistical methods of data 
imputation

• Expectation-maximization method

Methods based on loss nature 

Methods based on mathematical 
model

• Cluster analysis method
• Factor analysis method
• Neural network method
• Fuzzy logic method

Methods based on 
artificial intelligence 

Common Uncommon

Lost data recovery methods

Disadvantages of common methods

Disadvantages of uncommon methods
- complexity of implementation and verification
- rigid hardware requirements
- long computation time

- not universal
- require uniform data
- low precision
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Method of Multi-parametric UAS data recovery

UAS sensors

Available data selection

UAS parameter measurements, 
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“Health status” indicator ,
J

Lost data time detection

Outliers detection in UAS 
parameters measurements Outlier time detection

Creation of parameter 
matrixes
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nodes, τ
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Representation of multi-choice flight situations classification using the degree of 
deviation from the planned values

NS CFC DS ES CS

extremely meager 
deviations

safe flight

meager deviations

Necessity of flight 
control

slight deviations

Complicated return to 
CFC situation

significant deviations

an urgent need to make a 
decision about control

critical deviations

Mission failure
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Improved method of multi-choice UAV flight situations classification

Bringing to common coordinate system

Coordinates of planned UAV 
trajectory waypoints «Full» UAV flight coordinates

Data conversion to local coordinate 
system

Data conversion to local coordinate 
system

Interpolation of planned trajectory to 
time of measurements 

Estimation of deviation values

Estimation of conditional probability 
density values

Calculation of classes metrics

A posteriori probabilities estimation 

Classification according to 
maximum of a posteriori probability

Estimation of conditional probability 
density components according to UAV type

Class of flight situation
Probability of correct flight situation recognition
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Construction of UAV flight situations

Estimation of flight situation boundaries
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Visualization of flight situations in 3D space

UAV type CFC DS ES CS

I 10 -3 10 -4 10 -5 10 -6

II 10 -3 10 -5 10 -6 10 -7

III 10 -3 10 -5 10 -7 10 -8

IV 10 -3 10 -5 10 -7 10 -9

Safety limits according to flight situation and UAV type 

NS

CFC
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CS

Planned 
trajectory

Х, mY, м

Z, m
Range safety criteria for unmanned air 
vehicles – rationale and methodology 
supplement. Supplement to document 
323-99 / Range Safety Group, Range 
Commanders Council. – 1999. –75 p. 
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Estimation of a posteriori probabilities of flight situations

( )sхххх ,...,, 21= – vector of parameters measurements,
– vector of mathematical expectations for 

each parameter
В – matrix of MSD

A posteriori probabilities of flight situations are defined 
as:
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Fig. 7. A posterior probabilities of flight situations

Fig.5. Density function of multi-parametric normal 
distribution
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Verification by means of computer simulation

Setting of the 
initial data Flight plan creation Simulation of UAV 

flight

UAV parameters 
measurement 

simulation

Simulation of data 
loss 

Method of multi-
parametric UAV data 

recovery

Identification of UAV 
flight situation

Setting of 
permissible 
parameters 
deviations

Visualization of UAV 
recovered data

Visualization of UAV 
flight situation with a 
probability of correct 

recognition

Input data

Visualization of simulation results 21



Fig.10. Simulation of Z coordinate

Fig.9. Simulation of Y coordinate

Fig. 8. Simulation of X coordinate

Representation of UAV flight parameters simulation
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Fig.14. Errors of coordinates recovery
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Application for UAV flight data decoding and visualization

25



Selection of flight data file, application initial settingsFlight data format

«Hornet OSD» data 
decoding

Hornet 
OSD

MAV 
Link

Excel

«MAV Link» data decoding

Data 
downloading 
from “.xls” 

file

Data Reading from file with 
«Hornet OSD» protocol

Lost data time detection 

Method of multi-parametric UAV data recovering

Storage of recovered data

Flight situation 
identification

Data visualization

Flight data 
visualization

Storage of 
images

Data Reading from file 
with «MAV Link” protocol

Estimation of deviations 
from planned trajectory

OPL

Data encoding in «UAV 
Talk» protocol

Log-file storage

Visualization in 
«OPL» app

Storage of images

Application for UAV flight data decoding and visualization

Multi-choice flight situation classification and images storage

Flight data visualization
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Methods verification through experimental tests

The venue is Khodosivka 
landfill (latitude 50.27˚ N, 
longitude 30.53˚ E).

UAV - "Cessna N877S", 
completed with on-board "Panda-
II” equipment.

Flight data was transmitted over 
the radio channel to the GS and 
processed in specialized software 
GCS for Panda-II.
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UAS block-diagram

«Panda II»
autopilot

Elevator servo

Rudder servo

Aileron servo

Power supply Voltage distribution unit Engine

Airspeed sensor

GNSS

Communication equipment Laptop 
Remote control

UAV GCS

Communication 
equipmentRemote control receiver

UAV
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Results of experimental tests
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Fig. 19. UAV Y coordinate 
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Fig. 20. UAV Z coordinate 
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GPS current course angle

GPS current speed

GPS current altitude
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Attitude error
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UAV trajectory

Results of experimental tests
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Fig.  21. Recovery of UAV X coordinate
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Fig.  22. Recovery of UAV X coordinate
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Fig.  23. Recovery of UAV X coordinate

Representation of UAV flight data recovery
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Fig. 25. Deviations from planned trajectory

Representation of multi-choice classification of UAV flight situations
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Comparison of Х coordinate recovery by different methods

Recovery method MSD, m ME, m Maximum error, m Minimum error, m
Coefficient of 

determination

Linear interpolation 33,7 76,5 115,6 22,3 0,8

С1 spline interpolation 39,0 65,9 114,9 14,4 0,9

Nearest neighbor interpolation 68,8 76,4 142,9 9,4 0,002

MPDR 11,2 9,8 24,3 0,4 0,9
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Object detection and classification
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Alternative Positioning, Navigation, and Timing

• Performance improvement of positioning by multiple Navigational aids 
(DME/DMEs, VOR/DMEs, VOR/VORs) by integration advanced 
methods of sensor data prediction and filtering 

• Passive methods of positioning by multiple signals in space
• Location detection by Airborne Collision and Avoidance System data
• Vision based navigation system with image processing algorithms and 

its integration with GNSS and Inertial reference system
• Implementation of low-cost sensors in advanced data processing to 

ensuring safety and security levels and the desired performance gains in 
terms of resilience and cost efficiency

• An airspace performance analysis using advanced methods 
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APNT. Performance improvement of positioning by 
multiple Navigational aids

Performance improvement of positioning 
by multiple Navigational aids (DME/DMEs, 
VOR/DMEs, VOR/VORs) by integration 
advanced methods of sensor data 
prediction and filtering 

DME A

DME B

DME C

DME D

DA1

DB1

DA2

DB2

DA3

DB3

DC1

DD1

DA4

DB4

DC2

DD2

DA5

DB5

Positioning

ADFDME interrogator VOR Receiver

Advanced data prediction algorithms
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APNT. Passive methods of positioning by multiple 
signals in space

Passive positioning by data from 
- Distance Measuring Equipment
- Automatic Dependent Surveillance 

Broadcast 
- VOR

Fig. Ground tracks of “5082EF” and “4BBC81”Fig. Receiving available signals in space by SDR

DME A DME B

Passive 
receiver

Aircraft 
interrogator



APNT. Positioning by ACAS X data
ACAS X variants

ACAS XA – The general purpose ACAS X that makes active 
interrogations to detect intruders. ACAS XA is the baseline system, the 
successor to TCAS II. The Standards are expected to be ready by 2018 and 
ACAS X may become operational in 2020.

ACAS XO – ACAS XO is an extension to ACAS XA designed for particular 
operations, like closely spaced parallel approaches, for which ACAS XA is less 
suitable because it might generate a large number of nuisance alerts. The 
MOPS are jointly with ACAS XA MOPS and also are expected to be ready by 
2018.

ACAS XU – Designed for Remotely Piloted Aircraft Systems (RPAS), 
incorporating horizontal resolution manoeuvres. Work on Standards has started 
in 2016 and is expected to be finished in 2020.

ACAS XP – A future version of ACAS X that relies solely on passive 
Automatic Dependent Surveillance Broadcast (ADS-B) to track intruders and 
does not make active interrogations. It is intended for general aviation aircraft 
(that are not currently required to fit TCAS II).

Receiving air traffic data

Transformation to local reference frame 

НX0

Iterative approach with linearization of Taylor series

Distance measurements to airspace usersCoordinates of previous  aircraft 
location
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An airspace performance analysis using advanced methods 
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σposFL 490 VOR/DME
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Availability
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Thank you for attention!
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