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Artificial intelligence (Al) refers to systems that display intelligent behaviour by analysing
their environment and taking actions — with some degree of autonomy — to achieve specific
goals.

Al-based systems can be purely software-based, acting in the virtual world (e.g. voice
assistants, image analysis software, search engines, speech and face recognition systems) or
Al can be embedded in hardware devices (e.g. advanced robots, autonomous cars, drones or
Internet of Things applications).

As a scientific discipline, Al includes several approaches and techniques, such as machine
learning (of which deep learning and reinforcement learning are specific examples),
machine reasoning (which includes planning, scheduling, knowledge representation and
reasoning, search, and optimization), and robotics (which includes control, perception,
sensors and actuators, as well as the integration of all other techniques into cyber-physical
systems).”

Source: A Definition of Al: Main Capabilities and Disciplines. High-Level Expert Group on Artificial Intelligence set up by the European Commission, 9 p.
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Usage of Al may increase anticipatory and decision making capabilities within complex and uncertain environments. Al
systems have high potential in ATM, specifically in areas which involves decision making under uncertainty (e.g. conflict
detection and resolution) and prediction with limited information (e.g. trajectory prediction).

These approaches can support the human operators in exploitation of timely and dynamic information on atmospheric

hazards, traffic fluctuations, and airspace utilisation.

In addition to developing solutions to support en-route operations, Al can be applied in:

1)  speech recognition to act as an additional safety net to detect read-back errors;

i) trajectory synchronisation of aircraft ground movements that provide optimised taxiing strategies that comprehensively
accounts for arrivals and departures as well;

i) predicting the most optimal runway configuration for a given arrival sequence and departure schedule so as to maximise
the runway throughput. With the development of these tools, it is envisioned that Al will be integral to ATM operations
in the future to form a highly automated environment capable of supporting high intensity and more complex
operations. In similar fashion, these decision-making tools also have the potential to ensure that aviation is not held
back by human resource constraints.

There is therefore a need to align research, industry, State regulators and service providers to ensure readiness to face and
manage an environment where ATM is supported by highly intelligent automation functions that process and generate
advisories in a constantly evolving manner that can even adapt to new airspace users such as unmanned aircraft systems
(UAS).

Source: Potential of Artificial Intelligence (Al) in Air Traffic Management (ATM). ICAO, Working paper, 2018, 3 p.



Al in Eastern Europe
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Industry and Technology Distribution in Ukraine (57 Companies)
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Al-Industry Breakdown in Ukraine
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Drones and Al in Action
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Global revenues from Al for enterprise applications is projected to grow from $1.62B in 2018 to $31.2B in 2025 attaining a

52.59% CAGR in the forecast period. Image recognition and tagging, patient data processing, localization and mapping, predictive

maintenance, use of algorithms and machine learning to predict and thwart security threats, intelligent recruitment, and HR

systems are a few of the many enterprise application use cases predicted to fuel the projected rapid growth of Al in the enterprise.
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https://www.statista.com/statistics/607612/worldwide-artificial-intelligence-for-enterprise-applications/

SESAR STRATEGY

« SESAR-ER4-06-2019: Safety and Resilience
« SESAR-ER4-31-2019: U-space
(Application area: Common altitude reference

Application area: flight-planning and demand and capacity
balancing for drones

Application area: U-space separation management service )

« SESAR-ER4-02-2019: Cognitive Support

« SESAR-ER4-09-2019: Legal and Regulatory
Challenges of Higher Levels of Automation

« SESAR-ER4-24-2019: Innovation in CNS to
enable Digitalised Operations

(Application area: Low cost alternative Position, Navigation
and Timing (A-PNT) for General Aviation and drones)

Technical Specification of SESAR
2020 Exploratory Research [Call
H2020-SESAR-2019-2 (ER4)
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R hoblems: Multi-parametric data recovery in unmanned aerial
> “bad” UAV flight data system with multi-choice classification of flight
> uncertainty of flight situationSituations

Research objective:

To develop a method to recover lost UAV flight data and correct its outliers; to develop method of
multi-choice UAV flight situations classification.

Research tasks:

» To analyze flight data recovering methods; analyze general principles of flight situations

classification;

To develop a multi-parametric data recovering in Unmanned Aerial System;

To improve method of multi-choice UAYV flight situations classification considering recovered data;

To verify developed methods by means of computer simulation and experimental tests.

YV YV V

Output:
» method of multi-parametric data recovery

» method of multi-choice classification of flight situations

!

Situation awareness W#p Safety 10



UAS tendencies

It is predicted in 2022 — 2023 years the period of UAVs commercial sales, their products and
services will begin. In subsequent years, a rapid growth in demand for UAVs will be expected to
reach 250,000 units up to 2035. 175,000, of which will have commercial application.
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Factors that affect UAS operation

Flight safety depends on a large number of factors, whose actions are difficult to
predict and prevent, since most of them have probabilistic nature.

Inability of collisions

Adverse weather conditions detection and avoidance Navigation errors
e v _ﬂ____wf Failures and malfunctions

Software insecurity /> s ' —~ <« | of the functional systems
j"\w
- elements

Loss of communication link Inappropriate UAV Operator failures

technical conditions
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UAV roll, deg

UAV course, deg

Losses and outliers in UAS parameters measurements
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Analysis of lost data recovery methods

Lost data recovery methods

Common

Statistical methods of data
imputation

* Mean value imputation

» Imputation by constant value
Imputation by last value

Imputation by regression

ZET methods (Zet, ZetM, ZetBraid)
Bartlett's method

Resampling method

Methods based on loss nature

» Expectation-maximization method

Methods based on mathematical
model

Uncommon

Methods based on
artificial intelligence

Cluster analysis method
Factor analysis method
Neural network method
Fuzzy logic method

Disadvantages of common methods

- not universal
- require uniform data
- low precision
Disadvantaaes of uncommon methods
- complexity of implementation and verification
- rigid hardware requirements

- long computation time 14



Method of Multi-parametric UAS data recovery

UAS sensors
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Representation of multi-choice flight situations classification using the degree of
deviation from the planned values
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Improved method of multi-choice UAV flight situations classification

Coordinates of planned UAV
trajectory waypoints
|

«Full» UAV flight coordinates
]

v v
Data conversion to local coordinate Data conversion to local coordinate
system system

Bringing to common coordinate system

Interpolation of planned trajectory to
time of measurements :

v

Estimation of deviation values
v

Calculation of classes metrics

7'y

Estimation of conditional probability
density values L Estimation of conditional probability

density components according to UAV type

v

A posteriori probabilities estimation

v

Classification according to — Class of flight situation
maximum of a posteriori probability —— Probability of correct flight situation recognition




Construction of UAYV flight situations

Parameter Parameter
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Visualization of flight situations in 3D space

Safety limits according to flight situation and UAV type
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Estimation of a posteriori probabilities of flight situations
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A posteriori probabilities of flight situations are defined

as.

i (xs ) = Npkpk (xs)

> Pk Pk (xs)

where p, —a priori pr'f):blabilities of flight situations

Criterion of recognition:

qk(xs):max(q (Xs)) 20
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Setting of the
initial data

Verification by means of computer simulation

Input data

Setting of
permissible
parameters
deviations

A 4

Flight plan creation

Simulation of UAV
flight

A\ 4

UAV parameters
measurement
simulation

A 4

A 4

. Identification of UAV

flight situation

A

Method of multi-
parametric UAV data
recovery

A

Simulation of data
loss

A 4

Visualization of UAV

flight situation with a

probability of correct
recognition

A 4

Visualization of UAV
recovered data

Visualization of simulation results

21




Representation of UAV flight parameters simulation
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Representation of UAV flight data recovery
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Simulation results of UAV flight situations multi-choice classification
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Application for UAV flight data decoding and visualization
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Application for UAV flight data decoding and visualization

Flight data format [

Selection of flight data file, application initial settings
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Methods verification through experimental tests

The venue is Khodosivka
landfill (latitude 50.27° N,
longitude 30.53° E).

UAV - "Cessna N877S",
completed with on-board "Panda-
II” equipment.

.....

Flight data was transmitted over
the radio channel to the GS and
processed in specialized software
GCS for Panda-II.
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UAS block-diagram
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Results of experimental tests
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Results of experimental tests

UAV trajectory
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Representation of UAV flight data recovery
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Representation of multi-choice classification of UAV flight situations
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Comparison of X coordinate recovery by different methods
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Object detection and classification

B8O
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Alternative Positioning, Navigation, and Timing

Performance improvement of positioning by multiple Navigational aids
(DME/DMEs, VOR/DMEs, VOR/VORS) by integration advanced
methods of sensor data predlctlon and filtering

Passive methods of positioning by multiple signals in space
Location detection by Airborne Collision and Avoidance System data

Vision based navigation system with image processing algorithms and
its integration with GNSS and Inertial reference system

Implementation of low-cost sensors in advanced data processing to
ensuring safety and security levels and the desired performance gains in
terms of resilience and cost efficiency

An airspace performance analysis using advanced methods
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APNT. Performance improvement of positioning by

multinle Navigational aids

Performance improvement of positioning
by multiple Navigational aids (DME/DMEs,
VOR/DMEs, VOR/VORS) by integration
advanced methods of sensor data
prediction and filtering

DME D

[ Advanced data prediction algorithms

) ........
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[ DME interrogator ] [ VOR Receiver ] [ ADE ] , e




APNT. Passive methods of positioning by multiple
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APNT. Positioning by ACAS X data

ACAS X variants

ACAS X, — The general purpose ACAS X that makes active
interrogations to detect intruders. ACAS X, is the baseline system, the
successor to TCAS Il. The Standards are expected to be ready by 2018 and
ACAS X may become operational in 2020.

ACAS X, — ACAS XO is an extension to ACAS X, designed for particular
operations, like closely spaced parallel approaches, for which ACAS X, is less
suitable because it might generate a large number of nuisance alerts. The
MOPS are jointly with ACAS X, MOPS and also are expected to be ready by
2018.

ACAS X, — Designed for Remotely Piloted Aircraft Systems (RPAS),
incorporatinthorizontaI resolution manoeuvres. Work on Standards has started
in 2016 and is expected to be finished in 2020.

ACAS X, — A future version of ACAS X that relies solely on passive
Automatic Dependent Surveillance Broadcast (ADS-B) to track intruders and
does not make active interrogations. It is intended for general aviation aircraft
(that are not currently required to fit TCAS II).

Coordinates of previous aircraft
location Receiving air traffic data
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Distance measurements to airspace users
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Transformation to local reference frame
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* H \ 4 29 E 30 E 31 E 32 E 5w =

- erative approach with linearization of Taylor series NEU/ . - -Ao
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An airspace performance analysis using advanced methods

FL 105 DME/DME
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Avalabity of VOR for PLASO FL 490 VOR/VOR

Navigation System Error for FL490 <10%

tiumber of Availab'e VORs
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Thank you for attention!
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